Efficient Mechanics of PIP Mobilisation Splinting

Judy C Colditz, Consultant in Hand Therapy
Raleigh, USA

The proximal interphalangeal (PIP) joint, a tightly constructed hinge joint, frequently develops limited motion following injury. Mobilisation splints are the most frequently used method of regaining PIP joint motion following isolated PIP injury. This article reviews a variety of PIP mobilisation splints, which the author has found effective. In addition to discussing the biomechanics of PIP extension and flexion mobilisation splinting, a variety of designs are offered for PIP extension mobilisation and one design for PIP flexion mobilisation. Clinical problems discussed include: PIP extension lag, PIP flexion contracture responsive to stretch (including acute boutonniere), PIP joint contracture unresponsive to stretch, and gaining/maintaining the last few degrees of PIP extension in a resistive contracture as well as isolated PIP flexion mobilisation. For all splints, construction advice and other tips are given for successful use of these designs.

LIMITATIONS OF PIP JOINT MOTION

The proximal interphalangeal (PIP) joint is a tight-ly constructed hinge joint that has little tolerance for accessory motion. Being relatively unprotected, the PIP joint translates external forces into soft tissue injury. The frequently used, larger, and more powerful extrinsic flexor muscles overwhelm the weaker intrinsic extensors of the PIP joint. The thin, expansive extensor hood tendon has large surface contact with the underlying bone and easily adheres. As the patient attempts to either flex or extend the PIP joint, the more mobile proximal metacarpophalangeal (MP) joint receives the first transmission of force and either hyper-extends or hyper-flexes before the force is transmitted to the more resistive PIP joint.

Immediately following trauma the PIP joint will be swollen (joint effusion). The thinner dorsal part of the capsule allows one to palpate the fluctuant thickened joint oedema. The increased internal pressure within the joint provides resistance to full PIP motion. If seen acutely, such a joint needs immobilisation in full extension with compression to the digit to decrease the post-traumatic oedema in and around the joint. Only after the joint swelling has decreased, can mobilisation splinting be effective.

As healing proceeds, the injured healing capsular structures thicken and independent tissue layers adhere, providing resistance to full motion. The PIP joint often is bulbous from this tissue thickening and the bulbous shape makes the fitting of a mobilisation splint difficult.

These many factors combine to make resolution of a PIP Joint limitation a challenging task. Mobilisation splints are the most frequently used method of regaining PIP joint motion following isolated PIP injury. Not all PIP mobilisation splints are equally effective. The purpose of this article is to review the mechanics of a variety of PIP mobilisation designs the author has found effective.

To efficiently apply mobilisation splints to the resistive PIP joint, the hand therapist needs an understanding of wound healing and biomechanics that exceeds the scope of this paper. Therapists are encouraged to review the rationale of mobilisation splinting in other texts (Brand 1990, Brand and Hollister 1993, Colditz 1983, Colditz 1995c and Mc Kee and Morgan 1998).

BIOMECHANICS OF PIP EXTENSION MOBILISATION SPLINTING

An effective PIP mobilisation splint must:
- Localise the mobilisation force to the PIP joint while eliminating force to the more mobile MP and DIP joints.
- Apply three efficient points of pressure to mobilise the PIP joint into extension or flexion.
- Every splint applied to either immobilise or mobilise a joint must precisely apply three points of pressure. The middle force is directly over the axis of the joint (in this case the PIP joint) and the two opposing forces are as far away from the middle force as possible without crossing another joint (Figures 1a and b).

British Journal of Hand Therapy 2000, Vol 5 No 3
PIP extension mobilisation splinting requires the middle force to be applied dorsally directly over the PIP joint. When little padding over the bone condyles, pressure is poorly tolerated here. This counter-pressure point may be moved just proximal to the joint and remain effective, but the distal edge of the counterpoint should rest exactly at the axis of the PIP joint if the forces are to be maximally effective.

When PIP extension mobilisation splints apply force at the distal palmar point, the DIP joint will hyper-extend if the force is applied beyond the DIP joint. The short length of the middle phalanx, especially on the little finger, minimises the effectiveness of this distal lever arm. Splints that immobilise the DIP joint while applying an extension mobilising force to the PIP joint will increase the effectiveness of the distal lever arm.

Many PIP extension mobilisation splints and proximally at the finger web spaces. This length is only slightly more than one-half the span of the proximal phalanx. PIP extension mobilisation splints have greater mechanical advantage to extend the PIP joint if the proximal end of the splint is extended the full length of the proximal phalanx.

The PIP extension mobilisation splints discussed below incorporate these basic mechanical principles into their design and have been found by the author to provide effective PIP mobilisation solutions to a variety of PIP joint problems.

PIP EXTENSION MOBILISATION SPLINTING: CLINICAL PROBLEMS AND SOLUTIONS

Clinical Problem 1: PIP Extension Lag

Minor injuries to the PIP joint will frequently cause joint distension and capsular thickening. There will be resistance to the last few degrees of PIP extension and an extension lag results. In such circumstances the use of a PIP extension immobilisation splint at night in the position of full PIP extension will usually resolve the problem while also reducing the joint size.

* Available from Smith and Nephew
** Available from WR Corporation
*** Available from North Coast Medical, Inc.

Figure 2 Pattern for PIP extension mobilisation (or immobilisation) splint made of 1/16” splinting material completely around the finger with the material placed as far proximally on the finger as possible. Pinch the material together on the mid-dorsum of the finger and immediately cut off the extra material longitudinally to create a flat dorsal seam. This seam holds the tube shape together while the therapist fully extends the PIP joint until the material cools. Pressure may be applied directly over the PIP joint to hold the PIP joint extended, as the dorsal material will be eliminated. Counter-pressure is concurrently applied proximally over the flange at the palmar base of the proximal phalanx and under the DIP joint. Before removal of the splint, mark the mid-lateral point of the splint on
Figure 3a
A PIP extension splint should hold the PIP fully extended and be moulded with enough counter-curve so the splint is a strong shape.

Figure 3b
Self-adherent wrap is a useful means to maintain the digit in full extension while also providing compression to reduce oedema around the joint.

Figure 3c

the radial and ulnar aspect of the digit. When the material is cool, snap it apart at the dorsal seam and cut it off at the mid-lateral incision (Figure 3a).

In cases where the joint is fluctuant, the author prefers to use Coban®, a self-adherent elastic bandage material, rather than hook and loop fastener to secure the splint (Figure 3b). The Coban® worn at night maintains the extended position while also reducing oedema.

Night use of the splint will resolve a minor extension lag that results from increased resistance within the joint. If the joint is resistive to passive extension and the joint is not fluctuant, then a static progressive extension splint may be the splint of choice.

Acute boutonniere injuries may be managed by using the palmar digital splint with Coban® (Figure 3b) until full PIP extension is gained and the joint size reduced. After the initial joint oedema has subsided, the identical splint design is utilized to conform to the smaller finger size. After trimming the splint on the radial and ulnar borders, the end is cut off at the DIP flexion crease. This edge is warmed and rolled, allowing comfortable DIP flexion. A dorsal piece of splinting material is then moulded directly over the PIP joint. The dorsal piece overlaps the palmar piece slightly on each side and holds the PIP joint fully extended while distributing pressure over the dorsal surface. The overlap design creates a full circle of thermoplastic material and this rigid shape holds the PIP joint securely. The splint must be moulded as the size of the PIP joint continues to diminish. It is not mandatory to leave the DIP joint free until the PIP joint oedema has resolved and the joint can be securely held in full extension.

Rather than using a hook and loop strap to hold the halves together, the author prefers adhesive tape for those patients who are wearing the splint full time to protect the healing boutonniere injury. The adhesive tape prevents the two pieces moving in relation to one another and decreases the bulk of the splint.

CLINICAL PROBLEM 2: PIP FLEXION CONTRACTION RESPONSIVE TO STRETCH PIP joint injuries seen a few weeks following injury may exhibit limited active and passive PIP joint extension. Clinical examination will reveal the joint is responsive to the active extension force. Such joints respond readily to intermittent wear of a dynamic PIP extension mobilisation splint (Figures 4a and 4b). A custom fit spring wire splint either with or without a coil is the author’s choice (Cahalan and McIntee 1986, Golditz 1995b).

Although numerous commercial splints of similar design are available, having a commercial splint available that fits the patient as accurately as a custom splint is rare. The reader is encouraged to review previous publications for the specifics of construction of the spring wire splint (Cahalan and McIntee 1986, Golditz 1995b, Wynn Parry 1978).

Splint Construction Tips

The advantage of the custom splint is the ability to accommodate the bulbus PIP joint and distribute pressure precisely and comfortably. The axis of the coil is exactly at the PIP joint axis. The extension force is adjustable via the hook and loop closure. Making the distal lever arm longer increases its efficiency. The potential of DIP joint hyperextension is eliminated by moulding a DIP extension immobilisation splint that is worn as part of the PIP extension mobilisation splint (Figure 4a).

Figure 4a
Dynamic PIP extension mobilisation splint is made of spring steel plate wire, without coils. The distal interphalangeal joint (DIP) is immobilised with a palmar splint to increase the effective length of the distal lever arm, and prevent DIP hyperextension.

British Journal of Hand Therapy 2000, Vol 5 No 3
Clinical Problem 3:PIP Joint Contracture Unresponsive to Stretch

Longer standing PIP flexion contractures or those contractures of more than 35-45 degrees cannot effectively be treated with dynamic PIP extension mobilization splints. These more restrictive contractions require serial static extension mobilization splinting using plaster of Paris casting. This technique is well documented in the literature (Bell 1987, Bell, Krotoski 1995) and the reader is encouraged to review the technique as described.

The author has found that the problems of potential DIP hyperextension and the need to extend the proximal edge of the cast the length of the proximal phalanx can be resolved by altering the cast application technique (Colditz & Schneider 1995a). The use of Gypsona (plaster of Paris), a creamier plaster with a fine gauze, will facilitate a smooth and well-fitting digital cast.

Modified Cast Construction Technique

A thin cast is first applied to encircle the DIP joint and this is allowed to slightly harden. (Figure 5a)

A piece of plaster of Paris is then applied palmarly, extending the length of the proximal phalanx (from the palmar PIP joint crease to the distal palmar crease) (Figure 5b). After the palmar piece has hardened slightly, a small strip of plaster is applied in the length of the palmar piece and moulded to create a triangular shape. This reinforces the proximal phalanx, which would otherwise readily break. One-inch wide plaster of Paris is then applied to encircle the digit and the previously applied plaster pieces. The author has altered the technique as originally published in 1995, at the use of a thermoplastic material to reinforce the proximal phalanx sometimes creates maceration. The plaster of Paris is then moulded into a triangle that is used instead.

The advantage of this modified technique is the ability to elongate the proximal and distal lever arms of the cast. When gently passively extending the PIP joint as the platter of Paris hardens, with the modified technique one need not fear applying excessive pressure over the dorsum of the PIP joint (Figure 5c). Force can safely be applied proximally and distally to extend the joint as these areas have hardened plaster underneath.

Clinical Problem 4: Gaining or Maintaining the Last Few Degrees of PIP Extension in a Resistive Contraction

Following either dynamic PIP extension mobilization splinting or serial static PIP extension mobilization splinting, frequently the patient has difficulty maintaining the last few degrees of PIP extension. Often at this stage the intermittent wear of the dynamic splint is less effective and continuation of serial casting is impractical. In this circumstance the author has found a custom moulded static progressive PIP extension mobilization splint most effective (Figures 6a-c and 7). Any 1/8-inch thick thermoplastic material maybe used except those highly resistive to moulding. The palmar portion of the splint is moulded in a position of full PIP extension, not on the patient’s finger. The splinting material under the PIP joint is angled towards flexion. This prevents the PIP extension force from hyper-extending the DIP. A subtle but important part of the success of this splint...
design. The custom moulded dorsal piece distributes pressure comfortably as the PIP joint is fully extended (Figure 6c). A narrow (1/2-inch) hook and loop strap with a 1/2 Inch D-ring® allows the patient to precisely tighten the splint and apply progressive pressure to the dorsal piece.

This design is only effective for gaining the last few degrees of PIP extension.

FLEXION MOBILISATION SPLINTING: CLINICAL PROBLEMS AND SOLUTIONS
As with PIP extension, there are many reasons for the patient’s inability to gain full PIP flexion. This article does not allow adequate discussion of all clinical circumstances limiting PIP flexion, i.e. capsular adherence, tightness of the intrinsic muscles, adherence of the extensor mechanism/ extrinsic extensors, or inadequate adherent flexor system. The splint discussed below is useful for PIP flexion mobilisation - when the limitation is the result of an isolated to the PIP joint problem, when the concurrent position of proximal joints is irrelevant.

The three points of pressure needed for effective PIP flexion mobilisation splinting are reverse from extension splinting. The three points are 1) palmarly under the PIP joint 2) dorsally over the distal end of the middle phalanx and 3) dorsally over the proximal end of the proximal phalanx (Figure 1b). The difficulty in application of these points of force is the impossibility of applying force directly over the palmar aspect of the PIP joint while still allowing room for the joint to maximally flex. Application of the dorsal pressure over the dorsum of the MP joint may be uncomfortable due to the bony contour with little natural soft tissue padding.

Unlike PIP extension mobilisation splinting where the forces are almost in direct opposition, PIP flexion mobilisation splinting forces may be almost at right angles to one another (Figure 6a and b). With right angle forces the splint base shifts distally as the force is applied if the resistance to PIP flexion is greater than the stability of the splint on the hand. PIP flexion mobilisation splint designs frequently lack full PIP flexion rather than facilitating it. The author has used a splint design for many years that effectively eliminates these mechanical problems (Colditz 1983, Colditz 1996).

Van Gelden has suggested a PIP swing traction splint that mobilises the PIP joint through a full range of flexion (Van Gelden 1995). This design minimises the right angle forces, reducing the likelihood of distal migration. The Van Gelden design calls for a dorsal strap over the
CLINICAL PROBLEM 5: LACK OF PIP FLEXION
With an isolated PIP joint problem it is acceptable to position the normal MP joint in full extension while mobilising the PIP joint into flexion. By doing this, room is created to apply an outrigger that provides a 90-degree angle pull to the distal end of the middle phalanx. As the PIP joint gains flexion, the length of the outrigger is shortened to maintain the line of pull. Additionally, if PIP joint flexion is extremely limited, the palmar block over the proximal phalanx needs to be longer to stabilise the proximal phalanx. When the splint is to gain the test few degrees of PIP flexion the block must be much shorter so as not to impede full PIP flexion (Figure 9a and b).

Figure 9a
Dorsal view of the PIP flexion mobilisation splint showing the ability of the design that assists in minimising digital migration.

Figure 9b
Volar view of the use of a donut bumper to apply a digital force.

SPLINT CONSTRUCTION TIPS
The design of this splint necessitates that a narrow and relatively flat piece of splinting material is moulded dorsally across the extended MP joint (Figure 10). This thin shape is a weak point and the splint will bend here rather than mobilise the resistive PIP joint if this piece is not strengthened. Bonding another piece of splinting material moulded into a triangular shape longitudinally across the dorsum of the MP joint will adequately reinforce this area. The triangular shape is stronger than a flat piece of splinting material.

Figure 10
Pattern for the PIP flexion mobilisation splint shows that the distal flange may be cut either direction. The obliquity of the pattern depends on the finger involved; the base of the splint for the index and small fingers wraps around the ulnar border and for the ring and little fingers wraps around the radial aspect.

The splint base is designed to mobilise the MP joint in extension while obliquely crossing the dorsum of the metacarpals and wrapping around either the radial or ulnar aspect of the metacarpal bases (Figure 9a and b). The splint is held in place by a strap placed at a 45-degree angle on the opposite side around the base of the metacarpals. This moulding and strapping takes advantage of the enlarging circumference of the hand just distal to the wrist and prevents the splint from slipping distally when force is applied to flex the PIP joint. When the ring or little finger PIP joint is injured, the splinting material is wrapped around the radial aspect of the wrist. When the index or long fingers are involved the material is moulded around the ulnar aspect. Before applying a flexion force to the PIP joint, the splint must be moulded intimately and the strap applied securely to assure no distal migration is possible.
The part of the splint that encircles the finger must be carefully moulded so that the splint can be removed over the knuckles and the PIP joint, but can also be tightened to adequately stabilise the proximal phalanx. A dynamic or static progressive flexion force may be used with this design. The author's experience is that dynamic force is more comfortable at the end range of PIP flexion. Static progressive forces appear more effective and comfortable for the end ranges of PIP extension than flexion.

CONCLUSION

This article has presented PIP flexion and extension mobilisation splint designs that the author has found effective. Following a general discussion of mobilisation mechanics, examples of isolated PIP joint problems have been discussed. Both extension and flexion mobilisation splints have been discussed relevant to isolated PIP joint problems with suggestions for specific designs and tips for successful construction.

ADDRESS FOR CORRESPONDENCE:
Judy C. Colditz DPT, CMT, FAOTA
Consultant in Hand Therapy
RMHC/HandLab Inc
2615 London Drive
Raleigh NC 27608
USA
Tel: 919-782-3188
Fax: 919-782-2269
E-mail: JColditz@aol.com

REFERENCES:

Efficient Mechanics of PIP Mobilization Splinting

71